
1

International Journal of Recent Research and Review, Vol. X, Issue 2, June 2017

ISSN 2277 – 8322

Using Multi Expression Programming in Software Effort

Estimation
Najla Akram, AL-Saati, Taghreed Riyadh Alreffaee

Software Engineering Dept., University of Mosul, Iraq

Abstract - Estimating the effort of software systems is an

essential topic in software engineering, carrying out an

estimation process reliably and accurately for a

software forms a vital part of the software development

phases. Many researchers have utilized different

methods and techniques hopping to find solutions to this

issue, such techniques include COCOMO, SEER-

SEM,SLIM and others. Recently, Artificial Intelligent

techniques are being utilized to solve such problems;

different studies have been issued focusing on

techniques such as Neural Networks NN, Genetic

Algorithms GA, and Genetic Programming GP. This

work uses one of the linear variations of GP, namely:

Multi Expression Programming (MEP) aiming to find

the equation that best estimates the effort of software.

Benchmark datasets (based on previous projects) are

used learning and testing. Results are compared with

those obtained by GP using different fitness functions.

Results show that MEP is far better in discovering

effective functions for the estimation of about 6 datasets

each comprising several projects.

Keywords - Software Effort, Estimation, Genetic

Programming, Multi Expression Programming.

I. INTRODUCTION

With the recent rapid advance in area of software

engineering, software have become widely and

reliably used in business corporations and

manufacturing industrial sectors. This is due to its

accuracy and efficiency in achieving the required

tasks. The use of such packages forms both a source

of progression and an economical benefit to various

organizations by saving time and cost.

Accurate estimation of size, cost, effort, and

time tables for any software denotes the major

challenge facing software developers nowadays. Its

main influence on the software development

management resides in the direct impact of both

underestimation and overestimation in causing

damages to software foundation’s [1-2]. Estimating

software effort or cost precisely can provide

successful planning for project managers who

significantly reduce the risk of making uncertain

decisions about project activities and

accountabilities.

The importance of achieving accurate effort

estimation for software has always attracted

researcher to seek methods that can accomplish such

accuracy, algorithmic methods such as COCOMO [3],

Putnam model [4], and function points based models

[5], are in general incapable of dealing with

exceptional conditions, particular experience and

factors are not easily quantified, as well as the

inaccuracy of cost driver rating that can lead to

imprecise estimation. Non-algorithmic methods, on

the other hand, are more flexible to use and provide

the incorporation of human intelligence and their

intuitive experience to help achieve estimations that

are more reliable. These methods relate entirely too

computational intelligence methods such as Genetic

Algorithm GA, Neural Networks NN, Fuzzy Logic,

and Swarm Intelligence.

In this work a study is introduced to show the

possibility of applying one of the linear Genetic

Programming GP methods, aiming at providing a

function capable of yielding as accurate as possible

estimation of software effort. This method is called

Multi Expression Programming [6], a linear variation

of GP used to reduce the complexity experienced with

traditional GP by eliminating dealing with trees and

linked lists, handling and encoding chromosomes

linearly. Results are compared with GP using various

benchmark datasets.

II. RELATED STUDIES
Various research articles have been introduced in the

field of software reliability, each employing a

2

different methodology leading to variations in the

gained results, some of these are:

In 2001, Dolado [7] employed GP to find a

function that calculates the cost; results were

compared with other pervious outcomes. Lefley and

Shepperd [8], in 2003 similarly explored the use of

GP in improving the process of software effort

estimation based on general sets of data. In 2004,

Ohsugi, et al. [9] proposed a method for effort

estimation based on Collaborative Filtering and

retrieval of lost data as a strategy of estimation using

Defective Data.

GA was used in 2006 by Huang and Chiu [10]

to measure software effort via unequal weights, linear

and non-linear weights. In 2008, the idea of Bayesian

Network Models was used by Mendes and Mosley

[11] in a comparative study for web cost estimation.

Sheta and Al-Afeef [12] in 2010 used GP to evolve a

mathematical model for effort estimation using two

variables (Methodology and LOC) in order to evolve a

relationship between them.

In 2012, Ziauddin, Tipu, and Zia [13] found a

model for estimating the effort of Agile Software

Projects using traditional methods and test data of 21

projects. Arnuphaptrairong [14] in 2013 proposed the

use of Function Point FP with Data flow Diagram to

solve the problem of gaining estimation information in

early stages of software development, as most of the

estimation models were dependent on information

gained in the last stages of development.

Lately in 2015, Ruchi Puri and Iqbaldeep Kaur

[15] presented a Novel Meta-Heuristic Algorithmic

Approach to estimate software cost. They presented

BAT algorithm and Human Opinion Dynamics

algorithms for cost estimation using effort parameter.

Recentlyin 2016, Shivani Sharma, Aman

Kaushik, and Abhishek Tomar [16] used a Hybrid

Algorithm to solve the software cost estimation

problem; their objective was to compute the budget of

the project based on a Top down method that included

computing the function points of each module.

III. EFFORT ESTIMATION

In the field of software engineering, effort is

definable as the total time spent by members of the

development team to accomplish the required task. It

is usually stated in terms of man- day, man-month, or

man-year. There are many reasons tomotivate the

estimation of effort such as [17]:
• Project Approval. Deciding the launch of a

project on the part of an organization, preceded by

estimation of effort needed for positive project

completion.

• Project Management. Managers plan and manage

projects, which in turn require estimation of effort

as per respective phases so as to finalize a project.

• Development team members understanding. For

the development team to perform professionally,

its members have to understand their specific roles

along with the total activities of the team.

• Project task definition. This can be done using

effort estimation.

• Accuracy of effort estimation. This has formed

an important subject to researchers for the past 25

years. Various works categorize effort estimation

methods variably. Classifications taken into

consideration are:

• Empirical Parametric (Algorithmic)

estimationmodels;

• Empirical non-parametric estimation models;

• Expert estimation;

• Analogue estimation models;

• Downward estimation;

• Upward estimation.

Several independent surveys have been carried

out for the importance of effort estimation in the area

of software development; these investigations showed

that 70-85% of respondents agreed on the importance

of effort estimation. [2][18]Effort estimation methods

can be classified into the following [19]:

• Historical Analogy:when similar previous

historical data, this data (registered, recorded,

associated with previously completed projects) can

be used to calculate the effort for future projects.

• Experts’Decision: estimating effort this way

usually depend on a human expert, the expertise of

a human depends largely on how similar are his

previously faced projects with the currently

required to be estimated project. This method is

fairly accuratewhen the estimator has enough

experience in both software and estimation.

3

• The use of models:this can include estimations

created using mathematical or parametric cost

models. Such equations have been derived

essentially by means of statistical methods; they

usually involve human effort, cost and schedule.

• Rules-of-thumb:such rules may differ from simple

mathematical equations to specifying a percentage

of the activities or phase’s effort depending on

pervious historical data.

In the field of system engineering, pervious

historical data is considered as a source for estimating

future effort or cost. Unfortunately in the field of

software production, it is frequently very hard, ifnot

impossible, to find reliable datasets.

At the phase of design and construction for a

project, the process of estimating the effort is

considered to be very hard and complicated for the

following reasons [20]:

• A project of this size or type has never been built

before.

• Some new techniques are employed in it, which

has never been used earlier.

• The Productivity of personnel is largely

inconsistent.

The COCOMO model [3] is one of the first

methods used in calculating the effort automatically,

where the estimated effort is a function of expected

size as stated in Eq.(1).

𝐸 = 𝑎𝑆𝑏 (1.................)
Where

E: is the required effort.

S: is the expected size.

a, b: are constants.

The advantages of using COCOMO are[21]:

• It is easy to adapt and is very understandable.

• It provides more objective and repeatable

estimations.

• It creates the possibility of calibrating the model to

reflect any type of software development

environment and thus, providing more accurate

estimates.

• Works on historical data and hence is more

predictable and accurate.

While some of the disadvantages found in the

COCOMO model are [21]:

• This model ignores requirements and all

documentation.

• It ignores customer skills, cooperation, knowledge

and other parameters.

• It oversimplifies the impact of safety/security

aspects.

• It ignores hardware issues

• It ignores personnel turnover levels

• It is dependent on the amount of time spent in
each phase.

Most models of effort estimation relay on

Empirical Derivation using pervious project’s data,

where the software size is the input to the calculation.

This size is measured using LOC or FP. [22]

IV. GENETIC PROGRAMMING

The concept of Genetic Programming is derived from

the well-known idea of Genetic Algorithms in a trial

to answer one of the basic questions in computer

science:[23]

“How can computers learn to solve problems

without being explicitly programmed? In other

words, how can computers be made to do what is

needed to be done, without being told exactly how to

do it? ”

Genetic programming is a way of generating

computer programs automatically contributing vary

effectively in solving carefully specified problems,

forming one of Evolutionary Computational

techniques. This approach was successfully used to

solve a huge number of difficult problems such as

modeling industrial operations, water flow prediction

and others. [12]
Genetic Programming is one of the evolutionary

algorithms based on the evolutionary theory and the

nature‘s survival of the best idea. These algorithms

depend on forming a population of individuals each

represented as trees expressing an equation or a

program where there is no constraint on the resulting

data structure. [24]

There are four steps needed to establish GP,

they are necessary to solve the problem at hand [25]:

• Define Terminal and Function sets as stated by the

problem.

• Set the appropriate fitness function according to

the problem specification.

4

• Set Control Parameters including (iteration

number, tree size and depth, population size, and

crossover and mutation rates, etc.)

• Set stopping criteria.

After that, chromosomes of the first population

are randomly generated; each consisting of a random

combination of variables and functions appropriate for

the problem at hand, these variables and functions are

usually predefined by the user. The chromosomes

unlike GA have varying lengths in the population as

each encoded equation or program consists of a

different number of variables and functions.

The fitness of each chromosome in the

population is evaluated using a fitness function to

estimate the chromosome’s behavior and efficiency.

This function is measured in various ways such as

error ratio between the actual desired input and the

achieved output. It may also be measured through the

required (time, cost, or fuel) needed to reach the

desired goal. The function can similarly be calculated

using the resulting precision of applications such as

pattern recognition or object classification according

to given problem. [25]

Subsequently, a selection process is conducted

in order to specify which of the chromosomes are to

be chosen for reproduction and genetic operators, with

the intention of forming the offspring for the new

generation. This selection is basedon the fitness of

individuals, the more fit an individual is the more

chance it has to be selected.

V. MULTI EXPRESSION PROGRAMMING

GP is considered to be very complicated to program

and cope with due to the complexity associated with

tree structures. Thus many linear variations have been

proposed in the literature all aiming to simplify the

encoding of chromosomes in a linear effective

representation. One of these methods is the Multi

Expression Programming (MEP). [6]

Multi Expression Programming is a technique

that automatically generates computer programs,

mathematical expressions, and equations. It is very

much the same as GP, the differences residing

between them are [26]:

• In GP, each chromosome encodes a single

expression. On the other hand, a chromosome in

MEP encodes several expressions. Every one of

the encoded expressions can be selected to

represent the chromosome.

• The encoding of chromosomes is linear in MEP

unlike GP, where chromosomes are encoded

nonlinearly (as trees).

MEP algorithm begins by initializing the first

population randomly, after that a repetition of steps is

conducted until a stopping criterion is meat. In each

iteration, two parents are selected for recombination

producing two offspring; these may be subjected to

mutation. The best resulting offspring will replace the

worst individual in the population if its fitness was

better. In the end, the resulting best individual will

carry the best expression developed through the

previously specified number of generations.[26] the

main steps of MEP are given in Fig. 1.

Begin

 Generate Initial Population;

 t = 0;

 Evaluate_Individuals;

 While Not Termination_Condition Do

 Elitism;

 Selection;

 Recombination;

 Mutation;

 Evaluate_Individuals;

 End while

End

Fig. 1 Basic steps of MEP [6]

A. Chromosomal Encoding:

Every chromosome has a fixed number of genes,

every gene in encoded with either a Terminal symbol

or a Function symbol. Genes encoded with a function

must contain a pointer to the arguments of that

function, and the first gene of the chromosome must

always be Terminal.
One of the most important properties of this

method is its ability to store multiple solutions to the

problem in the same chromosome, with the best

solution being chosen according to the fitness. [26]

Assuming a chromosome (c) consisting of

multiple genes, a set of functions F={+,*}, and a set

of terminals T={a,b,c,d}. Then the encoding of the

chromosome according to MEP is:

5

1: a

2: b

3: + 1, 2

4: c

5: d

6: + 4, 5

7: * 3, 5

8: + 2, 6

The maximum number of a chromosome’s

symbols is calculated as in Eq.(2).

No. of Symbols= (n+1)*(No. of Genes-1)+1 (2.........)

Where

n: is the maximum number of arguments taken by a

function in set F.

Genes {1,2,4,5} were encoded with simple

Expressions, while the rest were encoded with

Complex Expression containing functions. Expression

3 employed the function {+} with two operands

present as pointer to locations of expressions

numbered {1} and {2} in the chromosome. So

decoding the third expression will result (E3 = (a + b))

and so on for the rest of the expressions.

E6 = c + d

E7 = (a + b) * d

E8 = b * (c + d)

The name of this algorithm, MEP, comes from

the fact that it allows encoding multiple expressions

and their number is equal to the length of the

chromosome (no. of genes). It is noticed that in this

chromosome the length is 8 and there exists an equal

number of expressions, the final form of the

chromosome is:

E1 = a,

E2 = b,

E3 = a + b,

E4 = c,

E5 = d,

E6 = c + d,

E7 = (a + b) * d,

E8 = b * (c + d)

Fig.2 shows the representation of the explained above

chromosome (c) as a tree, the numbers underlying

each branch are the expression’s numbers.

Fig. 2 Representation of Chromosome (c) as a tree [26]

B. Fitness Function

In any population, individuals are chosen according to

how well they perform on getting closer to reach the

required solution; this performance is called the

fitness of an individual needed to direct evolution in

favor of the best. This fitness is measured in various

ways according to the given problem.

One way to evaluate fitness isby measuring the

difference between the result of expression Ei called

(Ok,i) and the actual output (Wk) both for fitness case

(k), this is done as in Eq.(3), here the fitness has to be

minimized. After that, the fitness for the individual

will be the lowest fitness of the expressions encoded

in the chromosome, as in Eq.(4).[26]

𝑓(𝐸𝑖) = ∑ |𝑛
𝑘=1 𝑂𝑘,𝑖 − 𝑊𝑘| (3......................................)

𝑓(𝐶) = min 𝑓(𝐸𝑖) (4.)...

The main feature of MEP resides in overcoming the

various problems of GP such as the difficulty of

dealing with tree structures and the corresponding

effort of applying the genetic operators. In addition to

that, there is the problem of predefining tree size and

depth, which resembles a very critical problem in the

success of GP along with keeping that size in range

after successive crossovers between tree branches and

mutations and insuring that the resulting program is

always correct.

6

C. Genetic Operations:

MEP uses the same traditional genetic operators

introduced by GA, such as[6]:

• Recombination (crossover): after two

chromosomes are being selected using Roulette

Wheel or Tournament selection, crossover is

implemented according to its probability using:

• One-point Recombination

• Two-point Recombination

• Uniform Recombination

• Mutation:every symbol in the chromosome is

subjected to the probability of mutation. When a

symbol mutates from a terminal to a function, its

operands will be automatically generated and when

a function mutates to a terminal, its operands are

ignored.

D. Selection:

Selection is the process where individuals are chosen

from the population to undergo genetic operations

according to their fitness. In this work tournament

selection is used to choose two chromosomes

randomly from the population to go through

tournament. Thefitter individual of the competitors

will win the tournament and be subjected to genetic

operators. This method of selectionhasmany benefits

such as being easy to codeandprogram, as well as the

possibility of implementation in parallel architectures

[27].

The selection process usually guarantees giving

a better chance to the more fit individuals in the

population to move on to the next generation. [6]

Most of the studies have proved through tests and

experiments that the best tournament size is (2), this

size was used in the experimental part of this work.

VI. EXPERIMENTAL TESTING AND RESULTS

A. Datasets

In this work, an investigation has been carried out to

show the possibility of finding an estimation function

for software effort though out the use of MEP using

the Datasets shown in TABLE I.

The chosen Datasets were selected to provide

variety and diversity, and due to their availability and

recurrent use, they have become benchmark datasets

in this field of study used mainly in comparisons

among different methods and techniques introduced to

estimate software effort.

TABLE I

Data sets used in this work

No. Dataset Name Author’s

Name

Total no. of

Projects

1. Albrecht &

Gaffney[1]

A.J. Albrecht,

J.R. Gaffney

5 incomplete

(3,6,7,22,24)

24 points

2. Bailey & Basili

[28]

J.W. Bailey,

V.R. Basili

18 points

3. Heiat & Heiat

[29]

A. Heiat, N.

Heiat

35 points

4. Kemerer [30] C.F. Kemerer 15 points

5. Miyazaki et. al.

[31]

Y. Miyazaki,

M.Terakado,

K. Ozaki,

H. Nozaki

48 points

6. Desharnais[32] J.M. Desharnais 4 incomplete

(38,44,66,75)

77 points

Next are the experiments carried out along with the

results, in addition to the analysis and discussion.

B. Implementing MEP:

The first test in this work involves the implementation

of MEP on the Datasets mentioned in TABLE I.

Results are afterwards compared to those obtained by

Dolado [7] using GP. A crossover rate of (0.7) and a

mutation rate of (0.05) are used though out this

experiment. The preparation of the algorithm includes

defining the parameter settings as follows:

Population size: 40

Generations: 200

Function Set:{-, +, *, /, POWER, EXP, LOG, SQRT}

Terminal Set:The project’s variables depending on

the Dataset.

TABLE II shows the comparison between MEP’s

results and those found by GP. Results signify the

efficiency of MEP, as all the gained values were

noticeably better for all datasets. The best values are

shown for the fitness and generation numbers needed

to achieve that fitness.

7

TABLE II

 A Comparison between MEP and GP

No. Dataset GP MEP

Fitness Fitness Gen.

1. Albrecht & Gaffney 0.548 0. 33910 56

2. Bailey & Basili 0.269 0.14200 45

3. Desharnais 0.623 0.38951 67

4. Heiat & Heiat 0.087 0.08570 100

5. Kemerer 0.584 0.36854 200

6. Miyazaki 0.506 0.32420 200

C. Additional Investigation:

To further examine the efficiency of MEP, a

deeper investigation is conducted to show the impact

of population size and generations needed to reach the

required solution using the same function and terminal

sets. This investigation is done using two tests:

• TEST1: included small narrowed samples of

population size: (10, 20, 30, and 40) as well as for

generations: (25, 50, 75, 150, and 250).

• TEST2: involved considering larger and more

wide apart samples for population sizes and

generation numbers: (50, 100,

150,200,250,300,350,400,450,and 500)

Fig.(3–8) illustrate the results of applying the first

phase samples on the datasets in TABLE I. Fitness

values are shown against Population sizes across

colored bars reflecting the generation number (shown

in the legend on the right of each graph).

Fig .3Fitness values for TEST1)Albrecht & Gaffany(

Fig.4 Fitness values for TEST1 (Bailey & Basili)

Fig.5 Fitness values for TEST1 (Desharnais)

Fig.6 Fitness values for TEST1 (Heiat & Heiat)

 Fig.7 Fitness values for TEST1 (Kemerer)

8

Fig. 8 Fitness values for TEST1 (Miyazaki)

As can be clearly seen from the former figures, MEP

has the ability to accomplish a very distinguished

success with very small population sizes and of

generations’ number. They also confirm the fact that

increasing generations raises theprobability of gaining

better results. It is also obvious that theexpansion of

population sizes does not have much impact on

achieving better results (less fitness values).

On the other hand, Fig. (9 - 14) demonstrate the

fitness values for larger population sizes and greater

number of generations as given in TEST2 in an

attempt to traverse a wider area of the search space for

the problem, and to investigate the strategy of the

algorithm in searching for better results and more

suitable ones for the employed datasets.

Fig.9 Fitness values for TEST2 (Albrecht & Gaffany)

Fig.10 Fitness values for TEST2 (Bailey & Basili)

Fig. 11 Fitness values for TEST2 (Desharnais)

Fig. 12 Fitness values for TEST2 (Heiat & Heiat)

Fig. 13 Fitness values for TEST2 (Kemerer)

Fig. 14 Fitness values for TEST2 (Miyazaki)

This investigation indicates that increasing

generations allow for better solutions in general for all

datasets. But then again, larger population sizes did

not have an effect on improving fitness; this indicates

that small population sizes taken in TEST1 were

sufficient enough to achieve the same results.

9

𝑬 = 𝒙𝟏 ∗ 𝒙𝟏 − 𝒙𝟒 + 𝒙𝟒 ∗ 𝒙𝟑

As a whole, investigating a wider search space

for problems did not improve the results significantly,

but it has helped in establishing the appropriate sizes

required by the evolutionary algorithm to reach good

enough solutions and far better than those gained

using GP as shown in TABLE II.

The efficiency of MEP verified in this

investigation is related to the underlying structure of

the chromosome, as it encodes multipleexpressions

instead of only one. This structure increases the

effectiveness of the resulting solution.Fig. 15 depicts a

sample solution exemplifying the obtained equation

for effort estimation.

Figure (15) A sample solution represented by a tree

VII. CONCLUSIONS

The main purpose of this work is to efficiently adopt

the intelligence found in Artificial Intelligent

Techniques such as Genetic Programming in finding

effort calculating equations to estimate software

effort. This was done using MEP algorithm, one of the

GP linear variants in order to overcome the difficulties

of coding GP and application of genetic operators on

trees, not forgetting the obstruction of predefining tree

size and depth and keeping solutions correctly

functioning after crossover and mutation.

MEP has been applied successfully in this work

to solve the software effort estimation problem, the

algorithm was able to come up with very satisfying

solutions encoded in correctly formulated

chromosomes. These solutions (equations) are capable

of giving an estimation of effort for projects before its

establishment, and thus help in getting such a project

completed efficiently and satisfactorily. Results were

compared with those obtained by GP and found to be

far precise and accurate.

In addition, an investigation was performed to

show the impact of different population sizes and

varying generation numbers on fitness values, this has

proven that large populations did not have an effect on

providing better results; this is due to the efficiency of

the algorithm employed. Higher generation numbers,

on the other hand, had an impact, although not so

significant, on refining the fitness values obtained.

VIII. REFERENCES

[1] A.J.Albrecht1,J.R. Gaffney, (1983),” Software

Function, Source Lines of Code, and Development

Effort Prediction: a Software Science Validation”,

IEEE Trans. on SWE. 9(6) PP:639–648.

[2] R.Bhatnagar, M.K.Ghose, (2012) "Early Stage

Software Development Effort Estimations-Mamdani

FIS VS Neural Network Models". CS&IT.pp:377–

384.

[3] B.W. Boehm, (1981) Software engineering

economics, Englewood Cliffs, NJ: Prentice-Hall.

[4] L. H. Putnam, (1978).“A general empirical solution

to the macro software sizing and estimating

problem”. In IEEE Trans.on SWE, 4(4), 345-361.

[5] S.A.Abbas, et. al. (2012) “Cost Estimation: A

Survey of Well-known Historic Cost Estimation

Techniques”, J. of Emerging Trends in Computing

and Information Sciences, 3(2), pp. 612-636.

[6] M.Oltean, D.Dumitrescu,(2002).“MultiExpression

Programming”.TechnicalReport,UBB-01-2002.

[7] J.J.Dolado, (2001) . “On the problem of the

software cost function”, Information and Software

Technology, p:2001 Elsevier Science B.V.

[8] M.Lefley, M.Shepperd, (2003), “Using genetic

programming to improve software effort estimation

based on general data sets”. In Procs. of Genetic &

Evol. Comp. Conference, 2003, 2477–2487.

[9] N.Ohsugi, M.Tsunoda, A.Monden, and

K.Matsumoto, (2004),“Effort Estimation Based on

Collaborative Filtering”, In the 5th International

Conference on Product Focused Software Process

Improvement (PROFES2004), pp. 274-286.

[10] S.Huang, N.Chiu,(2006) “Optimization of Analogy

Weights by Genetic Algorithm for Software Effort

Estimation”.J. of Sys.& SW 48(11), pp:1034-1045.

[11] E.Mendes, N.Mosley, (2008). “Bayesian Network

Models for Web Effort Prediction: A Comparative

Study”. IEEE Trans. SWE, 34(6), pp: 723-737.

[12] A.F.Sheta, A.Al-Afeef, (2010). “A GP Effort

-

* +

X1 X1 X4 *

X4 X3

10

Estimation Model Utilizing Line of Code and

Methodology for NASA Software Projects”, In proc.

of 10th International Conf. on Intelligent Systems

Design and Apps., ISDA, pp: 290-295.

[13] Sh. Ziauddin, T. Kamal, Z. Shahrukh, (2012) “An

Effort Estimation Model for Agile Software

Development,” Advances in Computer Science and

Its Applications (ACSA), Vol.2, No.1, pp. 314-324.

[14] T.Arnuphaptrairong, (2013),”Early Stage Software

Effort Estimation Using Function Point Analysis:

Empirical Evidence”, Proc. of the Inter. Multi-Conf.

of Engineers and Computer Scientists Vol. II,

(IMECS), March 13-15, Hong Kong. pp: 730-735.

[15] R. Puri, I. Kaur, (2015) “Novel Meta-Heuristic

Algorithmic Approach for Software Cost

Estimation”. In I. J. of Innovations in Engineering

and Technology (IJIET), Vol(5), Issue-2.

[16] Sh. Sharma, A. Kaushik, and A. Tomar, (2016)

“Software Cost Estimation using Hybrid

Algorithm”. In I. J. of Engineering Trends and

Technology (IJETT). Vol.(37), No.2.

[17] J.Živadinović, Z.Medić,

D.Maksimovi,A.Damnjanović, S.Vujčić, (2011)

“Methods Of Effort Estimation In Software

Engineering”, In Inter. Symp. Eng. Manag.&

Competitiveness (EMC2011), June 24-25,

Zrenjanin, Serbia.

[18] I.Z., Quba, (2012). “Software Projects Estimation

using Neural Networks”. M.Sc. Thesis. College of

Computers Sciences &Math. University of Mosul.

[19] A.Tsakonas, G.Dounias, (2009). “Deriving Models

for Software Project Effort Estimation by Means of

Genetic Programming”. In KDIR-2009 Workshop

(INSTICC),6-8 October, Madeira, pp: 34-42.

[20] J.Asundi, (2005),”The Need for Effort Estimation

Models for Open Source Software Projects”,

Software Engineering (5-WOSSE) May 17,St

Louis, MO, USA. ACM 1-59593-127-9.pp:1-3.

[21] P. Rijwani, S. Jain and Dh. Santani, (2014).

“Software Effort Estimation: A Comparison Based

Perspective.” In I. J. of App. or Innovation in

Eng.& Manag. (IJAIEM). Vol.(3), Issue-12,. pp:18-

29.

[22] B.Jeng, D. Yeh, D. Wang, S.Chu, and C.Chen,

(2011),”A Specific Effort Estimation Method Using

Function Point”, Journal Of Information Science

And Engineering 27, pp: 1363-1376.

[23] J.R. Koza, (1994), “Genetic Programming II:

Automatic Discovery of Reusable Programs”.

©1994 Massachusetts Institute of Technology.

[24] J.R.Koza, (1992),”Genetic Programming: On the

Programming of Computers by Means of Natural

Selection”,©1992Massa. Institute of Technology.

[25] J.R.Koza, M. A.Keane, M. J.Streeter, W.Mydlowec,

J.Yu, G. Lanza, (2003) “Genetic Programming IV

Routine Human-Competitive Machine Intelligence”,

ISBN 1-4020-7446-8. © 2003 Springer

Science+Business Media, Inc.

[26] M.Oltean,(2006),“Multi Expression Programming”.

Tech.l Report, Babes-Bolyai Univ, Romania.28p.

[27] B.L.Miller; D.E.Goldberg, (1995). "Genetic

Algorithms, Tournament Selection, and the Effects

of Noise". Complex Systems. 9: 193–212.

[28] J.W.Bailey, V.R.Basili, (1981), “A Meta-model for

Software Development Resource Expenditures”.

Proc. of the 5th Inter. Conf. on SWE, pp: 107–116.

[29] A.Heiat, N.Heiat, (1997) “A Model for Estimating

Efforts Required for Developing Small-Scale

Business Applications”, In Journal of Systems and

Software 39 (1) pp:7–14.

[30] C.F.Kemerer, (1987), “An Empirical Validation of

Software Cost Estimation Models”, Comm. of the

Association for Comput. Machin.30(5).pp:416–429.

[31] Y.Miyazaki, M.Terakado, K.Ozaki, H.Nozaki,

(1994), “Robust regression for developing

softwareestimation models”, J. of Sys.& SW

27(1),pp:3–16.

[32] J.M.Desharnais, (1988), “Analyse statistique de la

productivite´ des projects de de´velopment en

informatique a` partir de la technique des points de

function”, M.Sc. Thesis, Univ. du Que´bec a`

Montreal, De´cembre,.

