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Abstract - Estimating the effort of software systems is an 

essential topic in software engineering, carrying out an 

estimation process reliably and accurately for a 

software forms a vital part of the software development 

phases. Many researchers have utilized different 

methods and techniques hopping to find solutions to this 

issue, such techniques include COCOMO, SEER-

SEM,SLIM and others. Recently, Artificial Intelligent 

techniques are being utilized to solve such problems; 

different studies have been issued focusing on 

techniques such as Neural Networks NN, Genetic 

Algorithms GA, and Genetic Programming GP. This 

work uses one of the linear variations of GP, namely: 

Multi Expression Programming (MEP) aiming to find 

the equation that best estimates the effort of software. 

Benchmark datasets (based on previous projects) are 

used learning and testing. Results are compared with 

those obtained by GP using different fitness functions. 

Results show that MEP is far better in discovering 

effective functions for the estimation of about 6 datasets 

each comprising several projects. 

Keywords - Software Effort, Estimation, Genetic 

Programming, Multi Expression Programming. 

I. INTRODUCTION 

With the recent rapid advance in area of software 

engineering, software have become widely and 

reliably used in business corporations and 

manufacturing industrial sectors. This is due to its 

accuracy and efficiency in achieving the required 

tasks. The use of such packages forms both a source 

of progression and an economical benefit to various 

organizations by saving time and cost. 

Accurate estimation of size, cost, effort, and 

time tables for any software denotes the major 

challenge facing software developers nowadays. Its 

main influence on the software development 

management resides in the direct impact of both 

underestimation and overestimation in causing 

damages to software foundation’s [1-2]. Estimating 

software effort or cost precisely can provide 

successful planning for project managers who 

significantly reduce the risk of making uncertain 

decisions about project activities and 

accountabilities.  

The importance of achieving accurate effort 

estimation for software has always attracted 

researcher to seek methods that can accomplish such 

accuracy, algorithmic methods such as COCOMO [3], 

Putnam model [4], and function points based models 

[5], are in general incapable of dealing with 

exceptional conditions, particular experience and 

factors are not easily quantified, as well as the 

inaccuracy of cost driver rating that can lead to 

imprecise estimation. Non-algorithmic methods, on 

the other hand, are more flexible to use and provide 

the incorporation of human intelligence and their 

intuitive experience to help achieve estimations that 

are more reliable. These methods relate entirely too 

computational intelligence methods such as Genetic 

Algorithm GA, Neural Networks NN, Fuzzy Logic, 

and Swarm Intelligence. 

In this work a study is introduced to show the 

possibility of applying one of the linear Genetic 

Programming GP methods, aiming at providing a 

function capable of yielding as accurate as possible 

estimation of software effort. This method is called 

Multi Expression Programming [6], a linear variation 

of GP used to reduce the complexity experienced with 

traditional GP by eliminating dealing with trees and 

linked lists, handling and encoding chromosomes 

linearly. Results are compared with GP using various 

benchmark datasets. 

II. RELATED STUDIES 
Various research articles have been introduced in the 

field of software reliability, each employing a 
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different methodology leading to variations in the 

gained results, some of these are: 

In 2001, Dolado [7] employed GP to find a 

function that calculates the cost; results were 

compared with other pervious outcomes. Lefley and 

Shepperd [8], in 2003 similarly explored the use of 

GP in improving the process of software effort 

estimation based on general sets of data. In 2004, 

Ohsugi, et al. [9] proposed a method for effort 

estimation based on Collaborative Filtering and 

retrieval of lost data as a strategy of estimation using 

Defective Data.  

GA was used in 2006 by Huang and Chiu [10] 

to measure software effort via unequal weights, linear 

and non-linear weights. In 2008, the idea of Bayesian 

Network Models was used by Mendes and Mosley 

[11] in a comparative study for web cost estimation. 

Sheta and Al-Afeef [12] in 2010 used GP to evolve a 

mathematical model for effort estimation using two 

variables (Methodology and LOC) in order to evolve a 

relationship between them.  

In 2012, Ziauddin, Tipu, and Zia [13] found a 

model for estimating the effort of Agile Software 

Projects using traditional methods and test data of 21 

projects. Arnuphaptrairong [14] in 2013 proposed the 

use of Function Point FP with Data flow Diagram to 

solve the problem of gaining estimation information in 

early stages of software development, as most of the 

estimation models were dependent on information 

gained in the last stages of development. 

Lately in 2015, Ruchi Puri and Iqbaldeep Kaur 

[15] presented a Novel Meta-Heuristic Algorithmic 

Approach to estimate software cost. They presented 

BAT algorithm and Human Opinion Dynamics 

algorithms for cost estimation using effort parameter. 

Recentlyin 2016, Shivani Sharma, Aman 

Kaushik, and Abhishek Tomar [16] used a Hybrid 

Algorithm to solve the software cost estimation 

problem; their objective was to compute the budget of 

the project based on a Top down method that included 

computing the function points of each module. 

III. EFFORT ESTIMATION 

In the field of software engineering, effort is 

definable as the total time spent by members of the 

development team to accomplish the required task. It 

is usually stated in terms of man- day, man-month, or 

man-year. There are many reasons tomotivate the 

estimation of effort such as [17]: 
• Project Approval. Deciding the launch of a 

project on the part of an organization, preceded by 

estimation of effort needed for positive project 

completion.  

• Project Management. Managers plan and manage 

projects, which in turn require estimation of effort 

as per respective phases so as to finalize a project.  

• Development team members understanding. For 

the development team to perform professionally, 

its members have to understand their specific roles 

along with the total activities of the team.  

• Project task definition. This can be done using 

effort estimation.  

• Accuracy of effort estimation. This has formed 

an important subject to researchers for the past 25 

years. Various works categorize effort estimation 

methods variably. Classifications taken into 

consideration are: 

• Empirical Parametric (Algorithmic) 

estimationmodels;  

• Empirical non-parametric estimation models;  

• Expert estimation;  

• Analogue estimation models;  

• Downward estimation; 

• Upward estimation. 

 

Several independent surveys have been carried 

out for the importance of effort estimation in the area 

of software development; these investigations showed 

that 70-85% of respondents agreed on the importance 

of effort estimation. [2][18]Effort estimation methods 

can be classified into the following [19]: 

• Historical Analogy:when similar previous 

historical data, this data (registered, recorded, 

associated with previously completed projects) can 

be used to calculate the effort for future projects.  

• Experts’Decision: estimating effort this way 

usually depend on a human expert, the expertise of 

a human depends largely on how similar are his 

previously faced projects with the currently 

required to be estimated project. This method is 

fairly accuratewhen the estimator has enough 

experience in both software and estimation. 
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• The use of models:this can include estimations 

created using mathematical or parametric cost 

models. Such equations have been derived 

essentially by means of statistical methods; they 

usually involve human effort, cost and schedule. 

• Rules-of-thumb:such rules may differ from simple 

mathematical equations to specifying a percentage 

of the activities or phase’s effort depending on 

pervious historical data. 

In the field of system engineering, pervious 

historical data is considered as a source for estimating 

future effort or cost. Unfortunately in the field of 

software production, it is frequently very hard, ifnot 

impossible, to find reliable datasets.  

At the phase of design and construction for a 

project, the process of estimating the effort is 

considered to be very hard and complicated for the 

following reasons [20]:  

• A project of this size or type has never been built 

before. 

• Some new techniques are employed in it, which 

has never been used earlier. 

• The Productivity of personnel is largely 

inconsistent. 

The COCOMO model [3] is one of the first 

methods used in calculating the effort automatically, 

where the estimated effort is a function of expected 

size as stated in Eq.(1). 

𝐸 = 𝑎𝑆𝑏 (1.................) ........ ........ .......................  
Where 

E: is the required effort. 

S: is the expected size. 

a, b: are constants. 
 

The advantages of using COCOMO are[21]: 

• It is easy to adapt and is very understandable. 

• It provides more objective and repeatable 

estimations.  

• It creates the possibility of calibrating the model to 

reflect any type of software development 

environment and thus, providing more accurate 

estimates.  

• Works on historical data and hence is more 

predictable and accurate. 

While some of the disadvantages found in the 

COCOMO model are [21]: 

• This model ignores requirements and all 

documentation. 

• It ignores customer skills, cooperation, knowledge 

and other parameters.  

• It oversimplifies the impact of safety/security 

aspects. 

• It ignores hardware issues  

• It ignores personnel turnover levels  

• It is dependent on the amount of time spent in 
each phase.  

 

Most models of effort estimation relay on 

Empirical Derivation using pervious project’s data, 

where the software size is the input to the calculation. 

This size is measured using LOC or FP. [22] 

IV. GENETIC PROGRAMMING 

The concept of Genetic Programming is derived from 

the well-known idea of Genetic Algorithms in a trial 

to answer one of the basic questions in computer 

science:[23] 

“How can computers learn to solve problems 

without being explicitly programmed? In other 

words, how can computers be made to do what is 

needed to be done, without being told exactly how to 

do it? ” 

Genetic programming is a way of generating 

computer programs automatically contributing vary 

effectively in solving carefully specified problems, 

forming one of Evolutionary Computational 

techniques. This approach was successfully used to 

solve a huge number of difficult problems such as 

modeling industrial operations, water flow prediction 

and others. [12] 
Genetic Programming is one of the evolutionary 

algorithms based on the evolutionary theory and the 

nature‘s survival of the best idea. These algorithms 

depend on forming a population of individuals each 

represented as trees expressing an equation or a 

program where there is no constraint on the resulting 

data structure. [24] 

There are four steps needed to establish GP, 

they are necessary to solve the problem at hand [25]: 

• Define Terminal and Function sets as stated by the 

problem. 

• Set the appropriate fitness function according to 

the problem specification. 
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• Set Control Parameters including (iteration 

number, tree size and depth, population size, and 

crossover and mutation rates, etc.) 

• Set stopping criteria. 

After that, chromosomes of the first population 

are randomly generated; each consisting of a random 

combination of variables and functions appropriate for 

the problem at hand, these variables and functions are 

usually predefined by the user. The chromosomes 

unlike GA have varying lengths in the population as 

each encoded equation or program consists of a 

different number of variables and functions. 

The fitness of each chromosome in the 

population is evaluated using a fitness function to 

estimate the chromosome’s behavior and efficiency. 

This function is measured in various ways such as 

error ratio between the actual desired input and the 

achieved output. It may also be measured through the 

required (time, cost, or fuel) needed to reach the 

desired goal. The function can similarly be calculated 

using the resulting precision of applications such as 

pattern recognition or object classification according 

to given problem. [25]  

Subsequently, a selection process is conducted 

in order to specify which of the chromosomes are to 

be chosen for reproduction and genetic operators, with 

the intention of forming the offspring for the new 

generation. This selection is basedon the fitness of 

individuals, the more fit an individual is the more 

chance it has to be selected. 

V. MULTI EXPRESSION PROGRAMMING 

GP is considered to be very complicated to program 

and cope with due to the complexity associated with 

tree structures. Thus many linear variations have been 

proposed in the literature all aiming to simplify the 

encoding of chromosomes in a linear effective 

representation. One of these methods is the Multi 

Expression Programming (MEP). [6] 

Multi Expression Programming is a technique 

that automatically generates computer programs, 

mathematical expressions, and equations. It is very 

much the same as GP, the differences residing 

between them are [26]: 

• In GP, each chromosome encodes a single 

expression. On the other hand, a chromosome in 

MEP encodes several expressions. Every one of 

the encoded expressions can be selected to 

represent the chromosome.  

• The encoding of chromosomes is linear in MEP 

unlike GP, where chromosomes are encoded 

nonlinearly (as trees).  

MEP algorithm begins by initializing the first 

population randomly, after that a repetition of steps is 

conducted until a stopping criterion is meat. In each 

iteration, two parents are selected for recombination 

producing two offspring; these may be subjected to 

mutation. The best resulting offspring will replace the 

worst individual in the population if its fitness was 

better. In the end, the resulting best individual will 

carry the best expression developed through the 

previously specified number of generations.[26] the 

main steps of MEP are given in Fig. 1. 

 

Begin  

 Generate Initial Population; 

 t = 0; 

 Evaluate_Individuals; 

 While Not Termination_Condition Do 

 Elitism; 

 Selection;  

 Recombination; 

 Mutation; 

 Evaluate_Individuals; 

 End while 

End 

Fig. 1 Basic steps of MEP [6] 

 

A. Chromosomal Encoding: 

Every chromosome has a fixed number of genes, 

every gene in encoded with either a Terminal symbol 

or a Function symbol. Genes encoded with a function 

must contain a pointer to the arguments of that 

function, and the first gene of the chromosome must 

always be Terminal. 
One of the most important properties of this 

method is its ability to store multiple solutions to the 

problem in the same chromosome, with the best 

solution being chosen according to the fitness. [26]  

Assuming a chromosome (c) consisting of 

multiple genes, a set of functions F={+,*}, and a set 

of terminals T={a,b,c,d}. Then the encoding of the 

chromosome according to MEP is: 
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1: a 

2: b 

3: + 1, 2 

4: c 

5: d 

6: + 4, 5 

7: * 3, 5 

8: + 2, 6 

 

The maximum number of a chromosome’s 

symbols is calculated as in Eq.(2). 

No. of Symbols= (n+1)*(No. of Genes-1)+1 (2......... )  

Where  

n: is the maximum number of arguments taken by a 

function in set F.  

Genes {1,2,4,5} were encoded with simple 

Expressions, while the rest were encoded with 

Complex Expression containing functions. Expression 

3 employed the function {+} with two operands 

present as pointer to locations of expressions 

numbered {1} and {2} in the chromosome. So 

decoding the third expression will result (E3 = (a + b)) 

and so on for the rest of the expressions. 

 

E6 = c + d 

E7 = (a + b) * d 

E8 = b * (c + d) 

 

The name of this algorithm, MEP, comes from 

the fact that it allows encoding multiple expressions 

and their number is equal to the length of the 

chromosome (no. of genes). It is noticed that in this 

chromosome the length is 8 and there exists an equal 

number of expressions, the final form of the 

chromosome is: 

E1 = a, 

E2 = b, 

E3 = a + b, 

E4 = c, 

E5 = d, 

E6 = c + d, 

E7 = (a + b) * d, 

E8 = b * (c + d) 

 

Fig.2 shows the representation of the explained above 

chromosome (c) as a tree, the numbers underlying 

each branch are the expression’s numbers.  

 
Fig. 2 Representation of Chromosome (c) as a tree [26] 

 

B. Fitness Function 

In any population, individuals are chosen according to 

how well they perform on getting closer to reach the 

required solution; this performance is called the 

fitness of an individual needed to direct evolution in 

favor of the best. This fitness is measured in various 

ways according to the given problem.  

One way to evaluate fitness isby measuring the 

difference between the result of expression Ei called 

(Ok,i) and the actual output (Wk) both for fitness case 

(k), this is done as in Eq.(3), here the fitness has to be 

minimized. After that, the fitness for the individual 

will be the lowest fitness of the expressions encoded 

in the chromosome, as in Eq.(4).[26] 

𝑓(𝐸𝑖) = ∑ |𝑛
𝑘=1 𝑂𝑘,𝑖 − 𝑊𝑘| (3...................................... )  

𝑓(𝐶) = min 𝑓(𝐸𝑖)  (4.)...................................................  

 

The main feature of MEP resides in overcoming the 

various problems of GP such as the difficulty of 

dealing with tree structures and the corresponding 

effort of applying the genetic operators. In addition to 

that, there is the problem of predefining tree size and 

depth, which resembles a very critical problem in the 

success of GP along with keeping that size in range 

after successive crossovers between tree branches and 

mutations and insuring that the resulting program is 

always correct. 
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C. Genetic Operations: 

MEP uses the same traditional genetic operators 

introduced by GA, such as[6]: 

• Recombination (crossover): after two 

chromosomes are being selected using Roulette 

Wheel or Tournament selection, crossover is 

implemented according to its probability using: 

• One-point Recombination 

• Two-point Recombination 

• Uniform Recombination 

• Mutation:every symbol in the chromosome is 

subjected to the probability of mutation. When a 

symbol mutates from a terminal to a function, its 

operands will be automatically generated and when 

a function mutates to a terminal, its operands are 

ignored. 
 

D. Selection: 

Selection is the process where individuals are chosen 

from the population to undergo genetic operations 

according to their fitness. In this work tournament 

selection is used to choose two chromosomes 

randomly from the population to go through 

tournament. Thefitter individual of the competitors 

will win the tournament and be subjected to genetic 

operators. This method of selectionhasmany benefits 

such as being easy to codeandprogram, as well as the 

possibility of implementation in parallel architectures 

[27].  

The selection process usually guarantees giving 

a better chance to the more fit individuals in the 

population to move on to the next generation. [6] 

Most of the studies have proved through tests and 

experiments that the best tournament size is (2), this 

size was used in the experimental part of this work.  

VI. EXPERIMENTAL TESTING AND RESULTS 

A. Datasets 

In this work, an investigation has been carried out to 

show the possibility of finding an estimation function 

for software effort though out the use of MEP using 

the Datasets shown in TABLE I.  

The chosen Datasets were selected to provide 

variety and diversity, and due to their availability and 

recurrent use, they have become benchmark datasets 

in this field of study used mainly in comparisons 

among different methods and techniques introduced to 

estimate software effort. 

TABLE I 

Data sets used in this work 

No. Dataset Name Author’s 

Name 

Total no. of 

Projects 

1.  Albrecht & 

Gaffney[1] 

A.J. Albrecht, 

J.R. Gaffney 

5 incomplete 

(3,6,7,22,24) 

24 points  

2.   Bailey & Basili 

[28] 

J.W. Bailey, 

V.R. Basili 

18 points 

3.   Heiat & Heiat 

[29] 

A. Heiat, N. 

Heiat 

35 points 

4.  Kemerer [30] C.F. Kemerer 15 points 

5.   Miyazaki et. al. 

[31]  

Y. Miyazaki, 

M.Terakado, 

K. Ozaki,  

H. Nozaki 

48 points 

6.  Desharnais[32] J.M. Desharnais 4 incomplete 

(38,44,66,75) 

77 points  

 

Next are the experiments carried out along with the 

results, in addition to the analysis and discussion. 

B. Implementing MEP: 

The first test in this work involves the implementation 

of MEP on the Datasets mentioned in TABLE I. 

Results are afterwards compared to those obtained by 

Dolado [7] using GP. A crossover rate of (0.7) and a 

mutation rate of (0.05) are used though out this 

experiment. The preparation of the algorithm includes 

defining the parameter settings as follows: 
 

Population size: 40 

Generations: 200 

Function Set:{-, +, *, /, POWER, EXP, LOG, SQRT}  

Terminal Set:The project’s variables depending on 

the Dataset. 
 

TABLE II shows the comparison between MEP’s 

results and those found by GP. Results signify the 

efficiency of MEP, as all the gained values were 

noticeably better for all datasets. The best values are 

shown for the fitness and generation numbers needed 

to achieve that fitness. 
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TABLE II 

 A Comparison between MEP and GP 

No. Dataset GP MEP 

Fitness Fitness Gen. 

1.  Albrecht & Gaffney  0.548 0. 33910 56 

2.  Bailey & Basili  0.269 0.14200 45 

3.  Desharnais  0.623 0.38951 67 

4.  Heiat & Heiat 0.087 0.08570 100 

5.  Kemerer 0.584 0.36854 200 

6.  Miyazaki 0.506 0.32420 200 

 

C. Additional Investigation: 

To further examine the efficiency of MEP, a 

deeper investigation is conducted to show the impact 

of population size and generations needed to reach the 

required solution using the same function and terminal 

sets. This investigation is done using two tests: 

• TEST1: included small narrowed samples of 

population size: (10, 20, 30, and 40) as well as for 

generations: (25, 50, 75, 150, and 250). 

 

• TEST2: involved considering larger and more 

wide apart samples for population sizes and 

generation numbers: (50, 100, 

150,200,250,300,350,400,450,and 500) 
 

Fig.(3–8) illustrate the results of applying the first 

phase samples on the datasets in TABLE I. Fitness 

values are shown against Population sizes across 

colored bars reflecting the generation number (shown 

in the legend on the right of each graph). 

 

 
Fig .3Fitness values for TEST1 )Albrecht & Gaffany( 

 
Fig.4 Fitness values for TEST1 (Bailey & Basili) 

 

 
Fig.5 Fitness values for TEST1 (Desharnais) 

 

 
Fig.6 Fitness values for TEST1 (Heiat & Heiat) 

 

 
 Fig.7 Fitness values for TEST1 (Kemerer) 
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Fig. 8 Fitness values for TEST1 (Miyazaki) 

As can be clearly seen from the former figures, MEP 

has the ability to accomplish a very distinguished 

success with very small population sizes and of 

generations’ number. They also confirm the fact that 

increasing generations raises theprobability of gaining 

better results. It is also obvious that theexpansion of 

population sizes does not have much impact on 

achieving better results (less fitness values). 

On the other hand, Fig. (9 - 14) demonstrate the 

fitness values for larger population sizes and greater 

number of generations as given in TEST2 in an 

attempt to traverse a wider area of the search space for 

the problem, and to investigate the strategy of the 

algorithm in searching for better results and more 

suitable ones for the employed datasets. 

 

 
Fig.9 Fitness values for TEST2 (Albrecht & Gaffany) 

 

 
Fig.10 Fitness values for TEST2 (Bailey & Basili) 

 

 
Fig. 11 Fitness values for TEST2 (Desharnais) 

 

 
Fig. 12 Fitness values for TEST2 (Heiat & Heiat) 

 

 
Fig. 13 Fitness values for TEST2 (Kemerer) 

 

 
Fig. 14 Fitness values for TEST2 (Miyazaki) 

 
This investigation indicates that increasing 

generations allow for better solutions in general for all 

datasets. But then again, larger population sizes did 

not have an effect on improving fitness; this indicates 

that small population sizes taken in TEST1 were 

sufficient enough to achieve the same results. 
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𝑬 = 𝒙𝟏 ∗ 𝒙𝟏 − 𝒙𝟒 + 𝒙𝟒 ∗ 𝒙𝟑 

As a whole, investigating a wider search space 

for problems did not improve the results significantly, 

but it has helped in establishing the appropriate sizes 

required by the evolutionary algorithm to reach good 

enough solutions and far better than those gained 

using GP as shown in TABLE II. 

The efficiency of MEP verified in this 

investigation is related to the underlying structure of 

the chromosome, as it encodes multipleexpressions 

instead of only one. This structure increases the 

effectiveness of the resulting solution.Fig. 15 depicts a 

sample solution exemplifying the obtained equation 

for effort estimation. 

 

 

 

 

 

 

 

 

 

 

 

Figure (15) A sample solution represented by a tree 

VII. CONCLUSIONS 

The main purpose of this work is to efficiently adopt 

the intelligence found in Artificial Intelligent 

Techniques such as Genetic Programming in finding 

effort calculating equations to estimate software 

effort. This was done using MEP algorithm, one of the 

GP linear variants in order to overcome the difficulties 

of coding GP and application of genetic operators on 

trees, not forgetting the obstruction of predefining tree 

size and depth and keeping solutions correctly 

functioning after crossover and mutation.  

MEP has been applied successfully in this work 

to solve the software effort estimation problem, the 

algorithm was able to come up with very satisfying 

solutions encoded in correctly formulated 

chromosomes. These solutions (equations) are capable 

of giving an estimation of effort for projects before its 

establishment, and thus help in getting such a project 

completed efficiently and satisfactorily. Results were 

compared with those obtained by GP and found to be 

far precise and accurate.  

In addition, an investigation was performed to 

show the impact of different population sizes and 

varying generation numbers on fitness values, this has 

proven that large populations did not have an effect on 

providing better results; this is due to the efficiency of 

the algorithm employed. Higher generation numbers, 

on the other hand, had an impact, although not so 

significant, on refining the fitness values obtained. 
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